Selecteer een pagina

Wiskunde Goniometrie

sin A = sin B  A= B + k*2π of A = π – B + k* 2π

cos A = cos B  A= B + k * 2π of A = – B + k* 2π

0 1/6 π 1/4 π 1/3 π 1/2 π
Sin
0 0.5 ½ 2 ½ 3 1
Cos
1 ½ 3 ½ 2 1/2 0

sin

cos

differentiëren

[sin at]’ = a cos at
[cos at]’ = -a sin at

productregel: f ’ * g + g ’* f
quotiëntregel: (nt’ – tn’)/ n2

Goniometrische formules

Sin(A + ½ π ) = cos A
Sin ( A – ½ π) = – cos A
Cos(A + ½ π) = -sin A
Cos (A – ½ π) = sin A

Sin(A + π) = -sin A
Sin(A – π) = -sin A
Cos(A+ π) = -cos A
Cos(A – π) = -cos A

Sin(-A) = -sin A
Cos(-A) = cos A